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Abstract
An eigenvalue problem relevant for the non-linear sigma model with singular
metric is considered. We prove the existence of a non-degenerate pure point
spectrum for all finite values of the size R of the system. In the infrared (IR)

regime (large R) the eigenvalues admit a power series expansion around the
IR critical point R → ∞. We compute high order coefficients and prove that
the series converges for all finite values of R. In the ultraviolet (UV) limit the
spectrum condenses into a continuum spectrum with a set of residual bound
states. The spectrum agrees nicely with the central charge computed by the
thermodynamic Bethe ansatz method.

PACS number: 03.70.+k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The non-linear sigma models in two-dimensional (2D) spacetime are widely used in field
theory as continuous models of two-dimensional spin systems (see, e.g., [1–4]) as well as in
relation to string theory (e.g., [5–8]). The general 2D sigma model (SM) is defined through
the action

A[G] = 1

2

∫
Gij (X)∂µXi∂µXj d2x (1)
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where the coordinates xµ, µ = 1, 2 span a 2D flat spacetime, while the fields Xi, i = 1, . . . , d

are coordinates in a d-dimensional Riemannian manifold called target space. The symmetric
matrix Gij is the corresponding metric tensor.

The standard approach to 2D sigma models is perturbation theory. If the curvature of Gij

is small, one can use the following one loop renormalization group equation from [3]:

d

dt
Gij = − 1

2π
Rij (2)

where t is the RG ‘time’ (the logarithm of scale) and Rij is the Ricci tensor of G.
The simplest examples of 2D sigma models are SM with two-dimensional target space

(d = 2). In this case Rij = Rδij where R is the scalar curvature. Then we can always choose
(at least locally) conformal coordinates for which

Gij = e�δij (3)

with a single function �.
An important role in the analysis of 2D sigma models is played by the effective central

charge c(R). This dimensionless function contains the information about the UV and IR
properties of the theory and it is related to the ground state energy E0(R) of the corresponding
quantum system, living on a finite space circle of length R:

E0(R) = −πc(R)

6R
. (4)

For SM with two-dimensional target space cUV = c(0) = 2.
In integrable theories this quantity can be calculated exactly using thermodynamic Bethe

ansatz (TBA) equations [9, 10]. This problem is, however, much more complicated for the
excited levels Ei(R), so it is useful to have some independent approach for their calculation.
It was shown in [11] that for the sigma models with d = 2, in the one-loop approximation
(equation (2)), this problem can be reduced to the eigenvalue problem for the operator:

ĥ = −1

2
∇2

t +
1

8
Rt ĥ�i = πei(R)

6
�i. (5)

Here ∇2
t = e−�

(
∂2
x + ∂2

y

)
is the Laplace operator and Rt is the scalar curvature in the SM

metric renormalized at the scale R:

t − t0 = log R�0 (6)

where �0 is the normalization parameter. This operator is self-conjugate with respect to the
scalar product in the SM metric:

(�1,�2) =
∫

�∗
1 �2 e� dx dy. (7)

The effective central charge c(R) in the one-loop approximation can be expressed through the
lowest eigenvalue:

c(R) = 2 − e0(R) (8)

and the excited levels Ei(R) = E0(R) + π(ei(R) − e0(R))/6R. We note that if in the IR limit
SM flows to the critical point described by conformal field theory (CFT) then the numbers
�i = (ei(∞) − e0(∞))/24 coincide with conformal dimensions of the fields in this CFT.

The eigenvalue problem (equation (5)) with the natural scalar product provided by the
metric Gij (X) can be applied to the analysis of 2D sigma models with target space of arbitrary
dimension d . It follows from Zamolodchikov’s c-theorem that the effective central charge
defined in [12] through the correlation functions of the energy momentum tensor is non-
increasing as a function of the scale R. The effective central charge defined by equation (8)
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(with d − e0(R) in the rhs) also satisfies this remarkable property, which follows from one
of the results of [13], where it was shown that the lowest eigenvalue of the operator ĥ is a
non-decreasing function of R.

A well-known solution to equation (2) (see [11]) defines the axially symmetric metric of
the ‘sausage’ SM (an integrable deformation of the O(3) non-linear sigma model), which is
described by the action:

Assg =
∫

(∂µX)2 + (∂µY )2

a(t) + b(t) cosh 2Y
d2x (9)

where a(t) = ν coth 2u, b(t) = ν/ sinh 2u and u = ν(t0 − t)/4π . It is easy to see from the
explicit form of metric (9) that operator ĥ/ν depends only on the variable u and does not
depend on parameter ν. It means that

e
ssg
i (R) = ν

4π
κ

ssg
i (u). (10)

where after the substitution � = exp(imx)�m(y) (m ∈ Z) the scaling function κ
ssg
i (u) is the

eigenvalue of the Sturm–Liouville problem:[
−∂2

y + m2 +
1 + cosh 2u cosh 2y

(cosh 2u + cosh 2y)2
−

1
6κ

ssg
i (u) sinh u

cosh 2u + cosh 2y

]
�(i)

m = 0 (11)

where the eigenfunctions �(i)
m have finite norm according to equation (7). For the ground state

κ
ssg
0 (u) this problem was studied in [11].

In this paper we consider the eigenvalue problem for the sigma model which corresponds
to another solution of RG equation (2). This solution can be obtained by analytic continuation
Y → Y + iπ/4, u → u + iπ/4 from the solution for the sausage model. The corresponding
action can be written as

A =
∫

(∂µX)2 + (∂µY )2

α(t) + β(t) sinh 2Y
d2x (12)

where α(t) = ν tanh 2u, β(t) = ν/ cosh 2u and u = ν(t0−t)/4π . This metric has a singularity
at Y = −u. It means that the coordinate Y in target space should be considered only in the
region Y > −u. The curvature R also has a singularity at this point. However, for small
values of parameter ν the curvature is not small only in the narrow region (δY ∼ ν) in the
vicinity of the singularity. A more careful analysis shows that the one loop approximation is
valid for the calculation of the observables in SM (12). The relative correction to the one-loop
approximation as well as in the sausage SM has the order ν log(1/ν). The eigenvalue equation
for the scaling functions κi(u) (ei(R) = νκi(u)/4π) now has the form:[

−∂2
y + m2 − 1 − sinh 2u sinh 2y

(sinh 2u + sinh 2y)2
−

1
6κi(u) cosh u

sinh 2u + sinh 2y

]
�(i)

m = 0. (13)

The solution �(i)
m (y) should now satisfy the boundary condition

�(i)
m (y) ≈

y→−u
(y + u)1/2 (14)

and it must be square integrable with respect to the natural norm∥∥�(i)
m

∥∥2 =
∫ ∞

−u

∣∣�(i)
m (y)

∣∣2

sinh 2u + sinh 2y
dy. (15)

In the IR limit u → −∞ the metric (12) has an asymptotic which can be written in the form
of equation (3) with exp{−�IR} = 1

2ν(exp{2Z} − 1), with Z = Y + u. For discrete values of
the parameter ν = 4π/N the SM with this metric can be derived from the SU(2) level N WZW



11884 V A Fateev and E Onofri

models by gauging U(1) symmetry (see [14, 15] for details). The resulting SU(2)N/U(1)

coset model described by the SM with metric exp(�IR)δij coincides with ZN parafermionic
CFT of [16]. For general values of u the quantum field theory (QFT) corresponding to
SM (12) can be considered as the deformation of parafermionic CFT. It is natural to expect
that it will be a massless theory describing the RG flow from rather non-trivial UV field theory
(which is also well defined for the same discrete values of parameter ν) with cUV = 2 to the
parafermionic CFT with cIR = 2 − 6/(N + 2) in the IR limit. The scaling functions κi(u) in
this case describe the RG dynamics of energy levels from the UV regime to IR asymptotics,
where they define (with relative accuracy O(1/N)) the spectrum of anomalous dimensions of
parafermionic CFT (see appendix C).

This massless QFT is integrable and can be described in terms of factorized scattering
theory for massless excitations. For ν = 4π/N with N � 3 the ground state energy
equation (4) of the SM (12) (as well as that of the sausage SM (9), of [11]) admits an
exact calculation by the TBA method. These equations will be described in section 5.

Both eigenvalue problems, equations (1) and (13), are believed to have a purely discrete
spectrum. The ground state eigenvalue κ

ssg
0 of equation (11) was studied in [11], where the

asymptotics of this function in the regimes u → 0 and u → ∞ were found. This function was
studied numerically in [17] and the result was in perfect agreement with the scaling function
calculated from TBA equations (see section 5). Actually it is rather easy today to solve the
spectral problem, equation (11), by using sparse matrix techniques available in mathematical
libraries. Good accuracy can be achieved by introducing a multi-grid discretization and using
Richardson extrapolation. This approach, however, is not immediately applicable to the new
equation (13), due to its singular nature. In the following we shall bring the equation to a
form which is suitable for a detailed perturbative analysis (section 2), to a second form which
allows an accurate asymptotic analysis in the UV regime (Lamé form, section 3) as well to
a third form, more suitable for a purely numerical approach (section 4). Finally (section 5)
we shall exhibit the matching of the ground state of equation (13) with the central charge of
the modified TBA system whose structure is given in figure 8. The interested reader will find
some further mathematical details in the appendices.

2. The connection with Heun’s equation

To bring equation (13) to a more manageable form, we begin by re-absorbing the integration
measure into the wavefunction. By defining

�(y) =
√

ρ(y)φ(y)
(16)

ρ(y) = sinh 2y + sinh 2u

we find

− d

dy

(
ρ(y)

dφ(y)

dy

)
+ (m2ρ(y) − sinh 2y)φ(y) = 1

6
κ cosh 2uφ(y). (17)

Putting x = e−2(y+u) and w = −e−4u, equation (17) is transformed into the following:

φ′′(x) +

(
1

x − 1
+

1

x − w

)
φ′(x) +

(1 − m2)x2 − 1
6κ(1 − w)x + m2 + w

4x2(x − 1)(x − w)
φ(x) = 0 (18)

of Fuchsian type. A further substitution φ → √
xf (x) reduces equation (18) to the form

f ′′(x) +

(
m + 1

x
+

1

x − 1
+

1

x − w

)
f ′(x) +

(1 + m)x − q

x(x − 1)(x − w)
f (x) = 0 (19)
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where the so-called accessory parameter q is given by

q = 1
24 (κ(1 − w) + 6(1 + w)(1 + 2m)). (20)

This equation was analysed by Heun in 1888 (see [18, 19]) who considered a general linear
differential equation of second order with four Fuchsian singularities. In Heun’s notation,
the solution is formally given by F(w; q; 1 + m, 1, 1 + m, 1; x), but this is of little use in
practice. We gain some insight from the fact that the limit w → −∞ is a case of confluence
of singularities which takes us back to the hypergeometric equation (see [19] for a general
treatment).

2.1. The eigenvalue problem in algebraic form

It is well known that series solutions for Heun’s equations can be most conveniently constructed
using the basis of Jacobi polynomials P (m,0)

n (1 − 2x) (see, e.g., [20], vol III). We are now
going to show how to solve the eigenvalue problem by exploiting this favourable basis: the
problem will reduce to finding the spectrum of an (infinite-dimensional) tridiagonal matrix
for which efficient algorithms are well-known to exist [21]. Let us consider equation (19):
after setting y = 1 − 2x, we can easily expand the solution in a series of Jacobi polynomials
Pm

n ≡ P (m,0)
n (y) by converting the differential equation in the form

Hf ≡
{
(1 − 2w − y)N̂(N̂ + m + 1) + (1 − y2)

d

dy
− (1 + m)y

}
f = (2q − m − 1)f (21)

where N̂Pm
n = nPm

n . Now we can use the basic properties of Jacobi’s polynomials (see, e.g.,
[20], vol II, [22]) to reduce the operator H to the form Hf = (1 − 2w)H0f + Vf whose
action on the basis vectors is particularly simple:

H0Pm
n = n(n + m + 1)Pm

n

VPm
n = m

(2 + m)n2 + (m + 1)(m + 2)n + m(m + 1)

(m + 2n)(m + 2n + 2)
Pm

n

− 2
n2(m + n)2

(m + 2n)(m + 2n + 1)
Pm

n−1 − 2
(n + 1)2(m + n + 1)2

(m + 2n + 1)(m + 2n + 2)
Pm

n+1. (22)

We can now conveniently study the spectrum of q using this tridiagonal matrix representation,
by applying, for instance, the technique of Sturm sequences and bisection [21]. The matrix
representation also lends itself to a very simple perturbation series expansion, as we discuss in
the next section. We shall have to refer to the matrix representation of H in the orthonormal

basis φm
n = (−)n

√
1

2n+m+1P
m
n as Vnn′ :

Vn+1,n = 2(n + 1)2(n + m + 1)2

(2n + m + 2)
√

(2n + m + 2)2 − 1
(23)

Vn−1,n = 2n2(n + m)2

(2n + m)
√

(2n + m)2 − 1

diagonal terms being unchanged, but the former V , being rational in its indices, is more
convenient for the calculation of perturbative coefficients; we show in appendix A that we can
use V without modifying the standard algorithm.
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2.2. Perturbation theory

The tridiagonal matrix representation of H, when rewritten as H = ε−1(H0 + εV), can be used
to calculate a perturbative expansion in the parameter

ε = (1 − 2w)−1 = (1 + 2 e−4u)−1. (24)

The convergence of the expansion is governed by the Kato–Rellich theorem5: let there
exist constants a, b such that ‖Vφ‖ � a‖φ‖ + b‖H0φ‖ (‖ · ‖ denotes L1-norm). Then the
perturbative expansion defines a regular analytic function for |bε| < 1. For a tridiagonal
matrix it is not so difficult to find norm estimates; in our case it is simple algebra to check that
the column sums of the matrix elements of V coincide with the diagonal matrix elements of
H0, up to an additive constant, therefore we have

V = S(H0 + (m + 1)I) (25)

with S a stochastic matrix6 and I the identity matrix. Hence it follows:

‖Vφ‖ = ‖S(H0 + (m + 1)I)φ‖ � ‖H0φ‖ + (m + 1)‖φ‖ (26)

which implies that the perturbative series will converge for ε < 1, that is for all u. Actually
we can say more: let us denote by R(H,µ) = (H + µ)−1 the resolvent operator; by applying
Schur’s test to the matrix R(H0, µ)V (the symmetric version of V) one concludes that

‖R(H0, µ)V ‖ � 1 (27)

if µ � m + 13/8. Now the resolvent of H satisfies the Lippman–Schwinger equation

R(H, µ) = R(H0, µ) − εR(H0, µ)V R(H, µ) (28)

which for |ε| < 1 can be inverted to give

R(H, µ) = (1 + εR(H0, µ)V )−1R(H0, µ). (29)

Since R(H0, µ) is a compact operator, equation (29) states that the resolvent R(H, µ) is itself
a compact operator, being the product of a compact operator with a bounded one. This implies
that the spectrum of H is purely discrete.

The expansion can now be computed rather easily by the standard recursive algorithm
(see appendix A). Details on the series expansion can be found in appendix B, where we prefer
to adopt a different parameter which naturally appears in the Lamé formulation of the next
section, namely

λ = (1 + e−4u)−1 = 2ε

1 + ε
ε = λ

2 − λ
. (30)

The expansion in powers of λ turns out to be simpler and with better convergence properties;
indeed the substitution ε → λ is just a special case of Euler’s (E, q)-method [26]. We present
just a sample of the infinite number of different series expansions, since we believe that nobody
would like to copy them from paper but would rather prefer getting the code which generated
the expansion7. The first few terms for the ground state value of κ at fixed m are the following:

1

6
κm,0 = 1 + 2m − 2m

m + 2
λ − 4(m + 1)3

(m + 2)3(m + 3)
λ2 − 8(m + 1)3(2m2 + 5m + 4)

(m + 2)5(m + 3)(m + 4)
λ3 + O(λ4)

(31)

5 See for instance [24, 25].
6 I.e.

∑
i Si,j ≡ 1.

7 Matlab and Mathematica codes are available at the web site www.fis.unipr.it/∼onofri.
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Figure 1. Relative deviation of ϒ expansion coefficients from those of its leading asymptotics
(×105) (equation (34)).

while for the excited states, after putting j = 1
2m + n, we have (see also appendix C)

1

6
κm,n = (2j + 1)2 − m2 − [4j (j + 1) − m2]2

8j (j + 1)
λ

− 1

29(2j + 1)

[
(4(j + 1)2 − m2)4

(j + 1)3(2j + 3)
− (4j 2 − m2)4

j 3(2j − 1)

]
λ2 + O(λ3). (32)

Using floating point arithmetic we may quickly explore very high orders, with due
attention to truncation errors which accumulate along the iteration. The asymptotic behaviour
of the coefficients shows very clearly a limit cn+1/cn → 1, confirming that the series converges
in the unit circle, which means in the domain |e4u/(1 + e4u)| < 1. In the complex u plane this
is a domain which includes the whole real axis. However, as we venture along the positive
real axis, the convergence is critically slowed down: to go deep in the UV region we may
be obliged to sum a really huge number of terms, or try some resummation, e.g., via Padé
approximants. Since high order coefficients are easily computed, however, we may try to
extract the asymptotic behaviour of κ(u) for large positive u by analysing the asymptotic
behaviour of the coefficients. For example, we can verify that the UV asymptotics of the
ground state eigenvalue κ0(u) coincides with that of function κ

ssg
0 (u) (see section 3) and has a

form:

κ0(u) = 3π2

2(u + log 4)2
+ O(1/u5). (33)

When expressed in terms of ε this formula can be expanded in a power series and the
coefficients compared to those coming from perturbation theory. Sub-dominant terms tend to
mask the simple n−1(log n)−3 behaviour one should expect; we find that it is more accurate
to compare the Taylor coefficients of the function 1/(4q − 1), which is actually diverging at
ε → 1, with those of its leading term O(log(1 − ε)2). However, to make the comparison
even more transparent, we may look for a special function whose behaviour at ε → 1 is the
simplest possible. Let us observe that 2q − 1 turns out to be an odd function of ε; the new
function

√
ε/(4q − 2 + ε) has the simple O(log(1 − ε)) leading singular behaviour at ε → 1,

and it is an even function of ε. We argue that its leading behaviour should then be

ϒ(ε) ≈ 1

2πε
log

(
1 + ε

1 − ε

)
. (34)

In fact, we find that the expansion of ϒ matches the perturbative series with a high accuracy
(see figure 1 where the deviation is magnified 105 times). The asymptotic behaviour will
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be recovered in a very precise way numerically in section 4, hence its extraction from the
perturbative series appears to be of purely academic interest. Anyhow, assuming equation (34)
it follows from equation (20):

κ ≡ 24q − 6(1 + w)

1 − w
≈ 6(4q − 1) = 6/ϒ2 ≈ 3π2

2u2
(35)

since 1
4 log((1 + ε)/(1 − ε)) = 1

4 log(1 + e4u) ≈ u as ε → 1.

2.3. Sausage model equation

The sausage model was our starting point. Now we go back to it and show how it fits into
the correspondence with Heun’s equation. The scaling function is defined in equation (11).
We shall now look for its algebraic equivalent as we did in section 2. Since the two equations
are related by analytic continuation, it will not come as a surprise that the differential equation
is the same, up to a map w → w̄, q → q̄. The range of values for the problem of SM
(12) is 1

4 < q < 1
2 , w < 0, while the sausage is characterized by 1

2 < q̄ < 1, w > 0.
The point is that equation (11) can be brought to Heun’s form by the transformation
ξ = exp{2(y + u)}. The singularities are now located at {0,−1,−w,∞}, with w = exp{4u}
and 24q = 6(1 + w) + κ(u)(w − 1). The equation is actually the same as the one we find for
the SM (12), but the domain involved is the positive real line instead of the unit interval and
the singularities are differently situated. By applying well-known transformation properties
of Heun’s equation ([18, 23]) we can reposition the domain on the unit interval (0, 1), the
singular points being now 0, 1, w̄ = w/(w − 1),∞ and the new accessory parameter is given
by

q̄ = w − q

w − 1
. (36)

Note that the map {q, w} → {q̄, w̄} is involutory with w = ∞ as the only fixed point, the
interval 1

2 < q̄ < 1 being mapped onto 1 < q < ∞.
Hence we can use the same algorithm of the previous section in a different domain. The

‘magic’ here is provided by the analyticity properties of the models involved. The complex
shift transforming the ‘sausage’ model into the SM (12) does not modify very much the
eigenvalue equation, which turns out to be the same equation in a different domain.

3. The Lamé formulation

The parameter λ defined by equation (30) is naturally related to a reformulation of
equation (13) close to the Lamé elliptic equation. If we define the modulus of Jacobi elliptic
functions

k2 = λ = 1/(1 + exp(−4u)) (37)

then the substitution

ey−u = dn (z|k2)

k sn(z|k2)
ψm =

√
sn(z|k2) dn (z|k2)

cn(z|k2)
�m (38)

maps the point y = ∞ to z = 0, the point y = −u to z = K , where K(k2) is the real period
of Jacobi elliptic functions, and it turns equation (13) to the form:(

− d2

dz2
− dn2(2z|k2)

sn2(2z|k2)
+

m2cn2(z|k2)

sn2(z|k2) dn2(z|k2)

)
ψm,n = 1

6
κm,nψm,n (39)
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with the boundary conditions ψm ∼ zm+1/2 at z → 0;ψm ∼ (K − z)1/2 at z → K.

This equation can be studied analytically in two limits k2 → 0 (u → −∞) and k2 → 1
(u → +∞). In the first case we can develop the standard perturbation theory near the exact
solutions ψm,n(z) = √

sin 2z cosm(z)P (m,0)
n (cos 2z) where P

(α,β)
n (x) are Jacobi polynomials.

This perturbation theory gives the same IR expansion for the eigenvalues which was considered
in previous section.

In the opposite limit u → ∞, k → 1 and the real period K ∼ − 1
2 log((1 − k2)/16) ∼

2u + 2 log 2 → ∞. In this case the potential term in equation (39) is equal to m2 almost
everywhere and near the points z = 0; z = K it can be approximated with exponential in u
accuracy by the potentials:

V (z) = − 1

sinh2 2z
+ m2 coth2 z 0 < z � K (40)

and

V1(z1) = − 1

sinh2 2z1
+ m2 tanh2 z1 0 < z1 ≡ K − z � K. (41)

Both these potentials appeared in [27], where the spectrum of CFT describing Witten’s two-
dimensional Euclidean black hole [28] was studied. There, it was noted that potential V1(z1)

is attractive and has the bound state solutions:

ψm,n =
√

tanh z1(cosh z1)
2n−m+1F(−n,−n + m,m − 2n; 1 − tanh2 z1) (42)

where F(a, b, c, z) is Gauss’ hypergeometric function. These solutions are normalizable for
integer n < (m − 1)/2 and give the levels

1
6κ = {

m2 − (2n + 1 − m)2|n = 0, 1, . . . ,
[

1
2m

] − 1
}
. (43)

The corresponding eigenvalues of equation (39) approach these levels exponentially in u.
The states corresponding to these levels describe the discrete degrees of freedom which

survive in UV asymptotics of the SM (12). We note that the UV limit of this theory is closely
related to the SL(2, R)/U(1) coset CFT, which was studied in detail in [27]. The bound
states there correspond to the principal discrete series representations of SL(2, R) and play an
essential role for the string theory interpretation of the coset model. We plan to discuss the
physical relevance of these discrete states for the dynamics of SM (12) in a future publication.

The potential V (z) is repulsive and does not have normalizable solutions. For 2n � m−1
we parametrize κm,n/6 = m2 + p2

n. Then solutions regular at z = 0 and at z1 = K − z = 0 are
found to be

ψm,n(z) = (tanh z)m+ 1
2 (cosh z)ipF

(
1
2 (1 + m − ip), 1

2 (1 + m − ip),m + 1; tanh2 z
)

(44)

ψm,n(z1) = (tanh z1)
1
2 (cosh z1)

ipF
(

1
2 (1 + m − ip), 1

2 (1 − m − ip), 1; tanh2 z1
)
. (45)

Matching these solutions with the plane wave solution in the region 0 � z � K we obtain the
quantization condition: pn = 1

4π(2n − m + 2)/(u + rm) where rm = ψ(1) − ψ
(

1
2m + 1

2

)
, and

ψ(x) is the logarithmic derivative of the � function. This condition leads to the asymptotics

1

6
κm,n(u) = m2 + π2 (2n − m + 2)2

16(u + rm)2
+ O(1/u5) n � 1

2
(m − 1) (46)

(see figure 4). We note that for m = 0 this UV behaviour is different from that for the sausage
model eigenvalues, which is given by

1

6
κssg

m,n(u) = m2 + π2 (n + 1)2

4(u + rm)2
+ O(1/u5) (n � 0). (47)
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The sausage model eigenvalue problem of equation (11) can also be written in the elliptic form
of [11] with k2

s = 1 − exp(−4u):(
− d2

dz2
− cn2

(
2z|k2

s

)
sn2

(
2z|k2

s

) +
m2 dn2

(
z|k2

s

)
sn2

(
z|k2

s

)
cn2

(
z|k2

s

))
ψm,n = κ

ssg
m,nk

2
s

6
ψm,n (48)

with boundary conditions ψm ∼ zm+1/2 at z → 0;ψm ∼ (K − z)m+1/2 at z → K. In the UV
limit u → ∞ the potential term in this equation at both ends tends to V given by equation (40).
The normalizable solutions do not appear and both asymptotics can be described by the
eigenfunction (44). The quantization condition for parameter pn in this case leads to the
asymptotics equation (47).

4. Numerical analysis

The matrix representation introduced in a previous section, while useful from the analytic
viewpoint, is not the best choice if we want to compute the spectrum beyond perturbation
theory. Actually an n-dimensional truncation of the matrix given in equation (22) is going to
be essentially equivalent to nth order perturbation theory. We are now introducing another
transformation of equation (13) which will allow us to efficiently explore the whole range
−∞ < u < ∞.

We start from the fact that in the limit u → −∞ (and m = 0) there is a simple solution
with

�(y) =
√

1 − e−2(y+u) ≡ σ(y) (49)

with κ(u) → 6. Hence it seems promising to look for a solution of the form

�(y) = σ(y)ψ(y). (50)

To find the new differential equation it is convenient to write down the functional 〈H〉 whose
critical points are the eigenvalues: by denoting χ(y) ≡ 1 − sinh 2u sinh 2y and recalling ρ(y)

from equation (16), we have

〈H〉 =
∫ ∞
−u

(�(m2 − ∂2)� − χρ−2�2) dy∫ ∞
−u

ρ−1�2 dy
. (51)

Now, by inserting equation (50), after an integration by parts, we find

〈H〉 =
∫ ∞
−u

[σ 2ψ ′2 + (σ ′2 − χσ 2/ρ2 − (σσ ′)′ + m2σ 2)ψ2] dy∫ ∞
−u

σ 2ρ−1ψ2 dy
. (52)

The variational equation resulting from this functional

− d

dy

(
σ 2 dψ

dy

)
+ V ψ = 1

6
κ cosh 2u σ 2ρ−1ψ (53)

suggests introducing a new coordinate ξ such that dy = σ 2 dξ ; we find

y = −u + 1
2 log(1 + e2ξ ) (54)

and the equation simplifies to

−d2ψ

dξ 2
+ σ 2V (ξ, u)ψ = 1

6
κ(u)W(ξ, u)ψ(ξ) (55)



An eigenvalue problem related to the non-linear σ -model 11891

–5 0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

V
W

–5 0 5 10 15 20 25

0.02

0.04

0.06

0.08

σ(ξ)4|ψ(ξ)|2/ρ(ξ)

ξ

n=0
n=1
n=2
n=3
n=4

Figure 2. The generalized potentials V,W (top) and the first eigenfunctions ψ2
n for u = 10,

m = 0.

with

σ 2V = e2ξ ((1 + e4u)2 + (1 + e2ξ )2 − 1 + e4u(e4ξ + 3 e2ξ ))

(1 + e2ξ )2(1 + e4u + e2ξ )2
+

1

4
m2(1 + tanh ξ)2 (56)

W = e2ξ (1 + e4u)

(1 + e2ξ )(1 + e4u + e2ξ )
. (57)

The crucial property of this new formulation is that it is now regular on the whole real axis.
With appropriate boundary conditions (Neumann bc)8 the eigenvalue equation can now be
easily solved by standard sparse-matrix generalized eigenvalue routines9

See figures 2 and 3 for some typical waveforms. The density includes the measure
appropriate for the new variable ξ , namely σ(ξ)4/ρ(ξ). In the limit u → −∞ we easily
recover the discrete spectrum

1
6κ = {

(2j + 1)2 − m2|j = n + 1
2m, n = 0, 1, 2, . . .

}
(58)

as we already know from perturbation theory (see equation (33)). In the other limit, u � 0,
the spectrum can be described as a monotonically decreasing flow towards κ/6 = m2, except
for a finite number of eigenvalues which have a value less than m2: these peculiar ‘bound
states’ are given by equation (43) and they are easily reproduced numerically (see figure 4).
We easily check that they nicely agree with the asymptotic formulae already given in
equation (47).

8 It is somewhat tedious to trace the bc back from the original equation; suffice it to say that, intuitively speaking,
since the constant solution is exact in the limit u → −∞, the Neumann bc are the natural ones.
9 We successfully used the routine eigs in Matlab.
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Figure 3. The densities at u = 10,m = 10: (a) ‘bound states’, (b) the ‘continuum’.
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/6
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Figure 4. The asymptotic behaviour in the UV for the low lying states at m = 0: lines →
equation (46), circles from numerical solution of equation (55).

5. Matching to TBA data

As already mentioned in the introduction for the special values of parameter

ν

4π
= 1

N
N = 3, 4, . . . (59)

the effective central charge of the SM (12) admits the exact (i.e. to all loops) calculation using
the TBA equations. These equations can be derived from the factorized scattering theory



An eigenvalue problem related to the non-linear σ -model 11893

–5 0 5 10

10
2

10
3

u

E
 =

 κ
/6

21

69

125

189

261

Figure 5. The spectrum flow for m = 10; the dashed line shows the continuum threshold.
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MR coshβ

Figure 6. The extended Dynkin diagram for the sausage model.

of right (r) and left (l) moving massless particles which form the spectrum of our SM. The
factorized scattering theory of massless particles is characterized by two-particle S-matrices
Srr (β), Sll(β) and Srl(β) where β is the relative rapidity of scattering particles. We propose
to discuss this scattering theory (as well as the perturbed CFT approach to our SM) in more
detail in another publication. Here we only note that each of these three S-matrices coincides
formally with the S-matrix for the massive particles in ZN parafermionic CFT perturbed by
the parafermionic operators. This S-matrix is described in detail in [29, 30]. This scattering
theory results in TBA equations which form the common system of N + 1 coupled non-linear
integral equations for N + 1 functions εa(β) of rapidity variable −∞ < β < ∞. The TBA
system has the form:

ρa(β) = εa +
1

2π

∫ N∑
b=0

ϕab(β − β ′) log(1 + exp(−εa(β
′))) dβ ′ (60)

where ϕab(β) = 1
2π

Iab/ cosh β, I being the incidence matrix of the extended affine DN

Dynkin diagram (see figure 7) and the source term

ρa(β) = 1
2RM exp(β)δa0 + 1

2RM exp(−β)δaN . (61)

The effective central charge can be calculated as

c(R) = 3

π2

∫ ∑
a

ρa(β) log(1 + exp(−εa(β)) dβ. (62)
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Figure 7. The extended Dynkin diagram for the SM (12).
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Figure 8. Matching κ to the TBA data.

The incidence matrix of these TBA equations is similar to that for the sausage model (see
figure 6), the only difference coming from the source terms. For the massive sausage model
(without topological term) ρa(β) = RM cosh(β)δa0.

The UV behaviour of c(R) is determined only by the structure of the incidence matrix
and we can find that in both cases the effective central charge approaches the limiting value
cUV = c(0) = 2 logarithmically (see [11]) in agreement with equations (46) and (47). The
analysis of TBA equations with source ρa given by equation (61) shows that in the IR limit
cIR = c(∞) = 2 − 6/(N + 2) coincides with the central charge of parafermionic CFT and the
IR corrections to this value have a structure:

c(R,N) = 2 − 6

N + 2
+ b2(N)

(
N + 2

MR

)8/(N+2)

+ b3(N)

(
N + 2

MR

)12/(N+2)

+ · · · . (63)

The IR asymptotics of our theory can be described by the methods of perturbed CFT. This
field theory is characterized by an integrable perturbative operator which belongs to the space
of fields of the parafermionic CFT and has the dimension �pert = 1 + 2/(N + 2). It gives us the
possibility of calculating analytically the first corrections to expansion (63). The exact values
for the coefficients b2(N) and b3(N) are presented in appendix C.

The effective central charge c(R,N) was computed using the TBA equations numerically
for several values of N (N = 5, 7, 11, 15, 23, . . .). At large N the central charge is predicted
to be given by

c(R,N) = 2 − κ0(u)

N + 2
+ O(1/N log N). (64)
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Figure 9. A close-up view of figure 8.

To verify this we have to relate u to the parameter MR entering the TBA equations. Within
the one-loop approximation we have a freedom which can be used to fit the data in the best
way. Asymptotically we expect u ∼ log(N/MR)/N , but finite N corrections are present and
may be important. Empirically we find that a rather accurate choice is the following:

u = N−1
eff log(N/MR) (65)

Neff =
√

(N + 2)(N − 2 tanh(4 log(N/MR))) (66)

which is used to build the plot of figure 8. It is quite evident that the data are increasingly well
matched by κ as N increases (in the deep UV or IR the agreement is even better).

Finally let us note that the exact values of the coefficients b2(N) and b3(N), given in
appendix C, have been reproduced with a high degree of accuracy by fitting the TBA data at
various values of N.

6. Conclusions

We have found a unified treatment of the general spectral problem for the sausage model and
its variant SM (12). The two formulations correspond to the same Heun equation defined on
different domains in the complex plane and they are linked by a projective transformation. The
spectral function κ(u) can be studied both numerically by diagonalizing a discretized form
of the differential operator, or analytically by a power series expansion around the IR point.
The perturbative expansion can be pushed to high orders and it turns out to be convergent
in the whole physical domain. Its asymptotic behaviour at high order is compatible with the
leading UV behaviour, which has been computed analytically. In the ultraviolet regime, the
spectrum, besides the expected continuous component, contains a set of bound states with
angular momentum higher than one. The scaling functions for the ground state have been
compared to the central charge computed via TBA equations: a very good agreement was
found, adding good evidence for the interpretation of the SM (12) (at ν = 4π/N ) as the field
theory describing the RG flow to the ZN parafermionic CFT.
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Appendix A

We recall some standard results from Rayleigh–Schrödinger perturbation theory for non-
degenerate levels, which should be found in any textbook on quantum mechanics.
Stationary perturbation theory is most efficiently formulated as an iterative algorithm. Let
H = H0 + εV,E0 any one of the unperturbed eigenvalues, with eigenstate |E0〉. Then the
perturbed eigenvalue E(ε) can be expanded as

E(ε) = E0 +
∑
n�1

δnε
n (A1)

while the eigenstate is given by a vector series in terms of auxiliary vectors |ηn〉 as

|E(ε)〉 = |E0〉 +
∑
n�1

εn|ηn〉. (A2)

The expansion coefficients can be computed through the following recursive algorithm:
Let

|η0〉 = |E0〉
and

R0 = 1 − |E0〉〈E0|
H0 − E0

then for any n � 1 we have{
δn = 〈E0|V |ηn−1〉
|ηn〉 = R0

{−V |ηn−1〉 +
∑n

k=1 δk|ηn−k〉
}
.

(A3)

The algorithm can be easily translated into any symbolic manipulation language. In
principle we should take care of defining the matrix V in an orthonormal basis; this would
introduce some square roots in our matrix, equation (22), while at the end the coefficients turn
out to be rational. Actually the following lemma tells us that we may comfortably work with
the unnormalized basis.

Lemma. Let H,H0, V , |E0〉, E(ε),R, δn, |ηn〉 be defined as above. Let us assume further, to
avoid any convergence problem, that V is a finite-band matrix along the main diagonal. Let S
be any non-singular Hermitian operator commuting with H0. Then we may substitute V with
SV S−1 in the iterative algorithm (A3), leaving everything else unchanged.

Proof. Let δ′
n, |η′

n〉 denote the sequence constructed by inserting SV S−1 into equation
(A3). Since S commutes with H0, we must have S|E0〉 = s0|E0〉 for some non-zero s0.
Hence

δ′
n = 〈E0|V s0S

−1|η′
n−1〉. (A4)

Let us define |η′′
n〉 = s0S

−1|η′
n−1〉. It is easy to check that the sequence {δ′

n, |η′′
n〉} satisfies the

same recursion as {δn, |ηn〉}, and moreover |η′′
0〉 = s0S

−1|E0〉 = |E0〉, hence the two sequences
must coincide. �



An eigenvalue problem related to the non-linear σ -model 11897

Note. The statement in the lemma is strictly perturbative. H and SHS−1 could be inequivalent
as operators, since S and/or S−1 may be unbounded, still they share the same perturbative
expansion.

Appendix B

We report the explicit expression of the series expansion of κm,n for small values of (n,m).
Of course this is just a sample; the code can generate them to any order, the only limitation
being the computer’s physical memory and time.

κ0,0 = 6 − λ2 − 1

2
λ3 − 229

720
λ4 − 109

480
λ5 − 62 999

362 880
λ6 − 20 159

145 152
λ7 − 299 803 787

2612 736 000
λ8

− 72 503 387

746 496 000
λ9 − 173 336 436 487

2069 286 912 000
λ10 + O(λ11)

κ1,0 = 18 − 4λ − 16

9
λ2 − 352

405
λ3 − 1972

3645
λ4 − 17 408

45 927
λ5 − 701 314

2460 375
λ6

− 34 835 788

155 003 625
λ7 − 204 567 413

1116 026 100
λ8 − 1588 447 666 493

10 358 117 240 625
λ9

− 4782 354 354 298 021

36 543 437 624 925 000
λ10 + O(λ11)

κ0,1 = 54 − 24λ − 27

5
λ2 − 27

10
λ3 − 23 949

14 000
λ4 − 34 047

28 000
λ5 − 370 287

400 000
λ6

− 826 209

1120 000
λ7 − 146 655 243 891

241 472 000 000
λ8 − 35 351 959 491

68 992 000 000
λ9

− 197 594 782 006 203

448 448 000 000 000
λ10 + O(λ11)

κ1,1 = 90 − 196

5
λ − 9664

1125
λ2 − 7627 904

1771 875
λ3 − 217 386 688

79 734 375
λ4 − 173 655 964 928

89 701 171 875
λ5

− 485 256 409 132 928

329 651 806 640 625
λ6 − 955 858 372 577 612 032

815 888 221 435 546 875
λ7

− 176 847 414 696 606 187 696

183 574 849 822 998 046 875
λ8 − 12 815 580 494 902 423 265 411 456

15 786 519 210 528 717 041 015 625
λ9

+ O(λ10).

Appendix C

In this appendix we give the exact values for the first IR correction to the levels emj (R) and two
first corrections to the effective central charge or to the ground state energy e0(R). We express
these corrections in terms of parameter M entering the TBA equations. These corrections can
be calculated analytically using the methods of integrable perturbed CFT. We consider the
case ν/4π = 1/N . In this case the IR limit of SM (12) is described by parafermionic CFT.
The conformal dimensions of the primary fields in this CFT are characterized by two quantum
numbers m and j (j = |m/2|, |m/2| + 1 · · · � N/2) and have the form:

�mj = j (j + 1)

N + 2
− m2

4N
. (C1)
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It is convenient to introduce Dmj = (N +2)�mj . As was noted in the introduction, the limiting
values of (emj − e0)/24 should coincide with �mj . With the first IR correction these values
are

(N + 2)(emj (R) − e0(R))

6
= 4Dmj − D2

mj

b1(j,N)

j (j + 1)

(
N + 2

MR

)4/(N+2)

+ · · · (C2)

where the coefficient b1(j,N) can be expressed through the function g(x) = �(1 + x)/

�(1 − x) and has a form

b1(j,N) = 2N2

(N + 2)2

g(1/(N + 2))2g((2j + 2)/(N + 2))

g(2/(N + 2))g(2j/(N + 2))
(8π)4/(N+2). (C3)

We note that in the large N limit the left-hand side of equation (C2) tends to (κmj − κ0)/6. For
4Dmj and b1(j,N) we have

4Dmj = (4j (j + 1) − m2)(1 + O(1/N)) b1(j,N) = 2 + O(1/N) (C4)

if we now define the parameter u by the relation: [(N +2)/MR]4/(N+2) = exp(4u) = λ/(1−λ)

we can see that the first term in the expansion given in equation (33) coincides with equation
(C2) at one-loop accuracy.

For the effective central charge c(R,N) (or for the ground state level e0(R)) it is possible
to calculate analytically two further IR corrections. Namely, the coefficients b2 and b3 in
expansion (63) are given by

(N + 2)b2(N) = N2(N − 2)2g(1/(N + 2))g(3/(N + 2))(8π)8/(N+2)

(N + 4)2(N + 6)2g(4/(N + 2))g(−2/(N + 2))2
= 1 + O(1/N) (C5)

(N + 2)b3(N) = −3N4(N − 4)2g(2/(N + 2))g(4/(N + 2))(8π)12/(N+2)

2(N + 4)4(N + 8)2g(6/(N + 2))g(−3/(N + 2))2
= −3

2
+ O(1/N).

(C6)

It is easy to see from these equations that with one-loop accuracy the IR expansion for the
function κ0(u) = 6 − λ2 − λ3/2 + · · · coincides with the exact IR expansion for the function
(N + 2)(2 − c(R,N)).

In the UV limit the leading term for the levels emj (R) (for j � m − 1/2) can also be
calculated exactly and has a form:

Nemj (R) = 6m2 +
3(j − m + 1)2π2N(N − 2)

2Z2
m(R)

+ O
(
1
/
Z5

m

)
(C7)

where Zm(R) = log(8π(N−2)/RM)+(N−2)(ψ(1)−ψ((m+1)/2))+ψ(1). This asymptotic
behaviour coincides at one-loop accuracy with equation (46), where n = j − m/2.
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